
Radar Raw Data Transfer between Radar Sensors
and Automotive ECU via SSC

Authors:
Dipl.-Ing. (FH) Marc Steuerer

Prof. Dr.-Ing. Alfred Höß
University of Applied Sciences

Amberg-Weiden

Abstract
This article shows a possibility to connect radar sensors directly to an electronic control unit (ECU)
and to transfer sufficiently fast the radar sample data. The approach is part of the German
research project AUTOSAFE. The project has been granted by the German Federal Ministry of
Education and Research (BMBF). AUTOSAFE aims at the improvement of road traffic safety. The
intention is to provide driver support during all driving phases and this has to be realised in a
modular, integral safety system. The driver assistance system is clustered in three categories,
which are comfort- and safety-oriented driver assistance as well as the combination of active and
passive safety systems.

1 Introduction
One sub-project of AUTOSAFE is represented by the development of a collision mitigation system
(CMS). This system is a safety-oriented as well as in parts a comfort-oriented driver assistance
system. For the perception of the environment, the first development step of the CMS uses three
front radar sensors. These radar sensors provide two different bus systems for the communication.
One is a CAN bus which is responsible for sending commands to the sensors. The other is the
synchronous serial channel (SSC) which is used for the transfer of the radar sample data (see
figure 1). Because SSC is much faster and has a simpler protocol than CAN, it is predestined for
the data transfer.

Very often radar signal processing algorithms are implemented on a PC and for the data transfer
between the sensor and the PC a gateway is responsible. But the advantages to replace a PC by
an ECU in automotive applications are on hand: It is more robust, provides a smaller design, the
operating system is real time and so forth. Furthermore, this approach reduces the amount of
external connections between the hardware components.

Figure 1: System Overview

MRR
left

LRR
mid

MRR
right

ECU

SSC CAN

Ethernet
For debug purpose

CAN / FlexRay
Output

The drawback of this approach is that the radar signal processing runs within the ECU and the
user cannot debug and display the results of this process as easy as on a PC. For that reason, the
ECU provides an Ethernet connection as well. Therewith it is possible to transfer all relevant
information and intermediate steps of the signal processing to a PC where it is easier to display
this information.

2 Data transfer
For the data transfer it is very important that the used bus system is able to transfer all incidental
data in almost real time. The amount of data during a radar measurement is very high. On this
account a bus system with a very high performance is needed. The SSC – bus introduced in this
paper is such a system.

SSC is a fast synchronous master-slave bus system. Physically, it is a four wire twisted pair
connection, were two wires are for the clock and two for the data. The signals are complementary,
the voltage levels are between ±2Volt and the bit rate is 10MBit /s .

The used protocol is quite simple (see figure 2). It is composed of a start- and a stop sequence
with two bytes each, the data blocks and a couple of idle times. During the idle times the clock is
also logical zero. The first data block contains the samples of the up sweep and the second data
block the samples of the down sweep. Each measurement for the up- and the down sweep
respectively has a length of 256 samples. The resolution of each sample is 16 bits, thus two bytes.
Additionally to the payload data the protocol needs four bytes for the start- and stop sequence.
Altogether the sensors have 512 bytes⋅24bytes =1028 bytes to transfer.

The transmission of one byte takes 10−6⋅8=800 ns . The approximately amount of the idle times
is 20 µs . With this information the total transmission time can be calculated.

1028bytes⋅0.8 µs20 µs=842.4µs
The transmission time of the pure payload data (without the idle times) takes 822.4µs , so the
ratio between the pure and the total transmitted information is:

822.4 µs
842.4 µs

=0.98

This again is equivalent to 98 percent. In comparison with other bus systems, in particular the CAN
bus where the ratio is about 60 percent, the ratio of the SSC – bus is very good.

For the triggering of the radar sensor it is necessary to send some control information via the CAN
bus. Three CAN messages have to be sent for the whole measurement and data transfer process.
This procedure is illustrated in figure 3. The used CAN bus is a high speed bus and works with a
speed of 1MBit /s . The length of the messages is four bytes in all cases. That leads to an
approximate transfer time of 78 µs per message. This CAN network is composed of just the
radar sensor and no other clients are connected to it.

Meaning and progress of the CAN messages are as follows. First, it is necessary to send a

Figure 2: SSC - Protocol

StartIdle Data

512 Byte (1. Block) 512 Byte (2. Block)

Idle Data Idle Data Data IdleStop

Clock:

Data:

command which starts the measurement, next step is to set the sensor as master. This means the
sensor is responsible for the generation of the clock and for the preparation of the radar data. If the
master set command was successful, the sensor answers with a positive reply. Now it is possible
to start the data transfer via SSC, this happens because of the third CAN message.

After the transmission of the raw radar data via SSC, all necessary information was transferred to
the ECU and the signal processing can start. The results as well as intermediate steps can be
transmitted via the CAN bus, Ethernet or FlexRay to other ECUs or for debugging and displaying to
a PC. In figure 3 the transmission of the generated peak list to a PC is exemplarily illustrated.

3 Realisation
For buffering the radar raw data within the ECU, a hardware FIFO buffer is used. The size of this
buffer is 512 bytes. Since the sensors transfer 1028 bytes it is necessary to clear the buffer during
the transmission process and to store the information into an internal memory (software double
buffer). For reading the data out of the hardware FIFO automatically a so called “alarm level” is
responsible. If the alarm level has sent a trigger impulse to the software, it starts to acquire the
data. During the read out process it is possible to fill the FIFO further. It is very important to set the
alarm level to a suitable value. For example, if the alarm level value is too high, the FIFO buffer
could overflow before the software has readout all entries.

For the calculation of the alarm level several items need to be considered. The FIFO buffer has to
be read out automatically with the last incoming data byte from the sensor and the FIFO must not
overflow. The value of the alarm level has to be in the range of the FIFO buffer size.

An integral divisor is needed which allows to read out the FIFO after the very last transmitted byte.
The approach in this matter is the prime factor analysis. That leads to the following result:

257⋅22bytes=1028bytes
From this it follows that the desired value for the alarm level is 257. That means after every 257
bytes the software reads out the FIFO buffer automatically.

From figure 2, one can conclude that this value represents a good choice. The up sweep contains

Figure 3: Data transfer

PC SensorECU

CAN-message: start gauging

CAN-message: set sensor as CAN-master

CAN-message: acknowledge

CAN-message: start transfer

SSC-message: sensor data

peaklist

Radar signal
processing

transfer via
CAN-Bus

or Ethernet

514 bytes: the down sweep contains the same number of bytes. With the chosen alarm level, the
software has to clear the FIFO buffer twice for the up- as well as twice for the down sweep. The
idle time between the up- and the down sweep gives the ECU a little bit more time to readout and
store the information.

But what happens if some data get lost during the transmission process? This case has to be
considered and checked. If this case occurs, the received data are not valid and have to be
discarded. To solve this problem a timeout is used. If this timeout has expired and the FIFO buffer
has not been read out four times an error has occurred during the transmission process. It is
mandatory to choose the time for the timeout marginally larger than the total transmission time.

If the transmission was not valid and the data have been discarded, a new transmission process
has to be started automatically. It does not make any difference, whether the error occurs in the up
sweep or in the down sweep. A completely new measurement and transmission process has to be
started.

The valid data are stored in a double buffer (see figure 4). With this kind of buffering the data have
to be provided to the application. One buffer stores the next incoming data packet, whereas the
other buffer provides the data to the application. But before the data is transferred to the double
buffer it is necessary to remove all irrelevant bytes from the incoming data stream. These are the
start- and stop sequence.

The signal processing part, which uses the data from the radar sensors, gets just a pointer to the
accordant buffer. This pointer has been set automatically to the desired and correctly filled buffer.
To avoid simultaneous use of the filling buffer, it is mandatory to use mutual exclusion (mutex) to
protect this access. Therewith it is impossible that the application gets access to a buffer which is
in the filling process at the moment.

4 Conclusion
The SSC – bus is a suitable interface to transfer raw radar data from the sensor to an ECU.
Therewith it is possible to send the requested data almost in real time and the latency time
between the first request and the start of the data transmission is also satisfying.

A big advantage is that the data transfer and the whole signal processing are running on just one
ECU and not on different systems. Further on, it avoids problems which can occur with different
transmission lines and with the use of PCs in automotive applications (see also section 1).
Anyway, it is possible to send important information to a PC or show signal processing steps on a
display which is plugged to the ECU.

Figure 4: FIFO system

Radar data

FIFO

Alarm level
257

full buffer

filling buffer

double buffer -
protected by mutex

Application
 Pointer

1

512

5 Acknowledgement
This work was supported by the German Research Ministry (BMBF). The authors want to thank the
Nanoelectronic unit of the BMBF for granting AUTOSAFE under funding no. 01M3076.

6 References
[1] Tobias Beyrle, Diploma Thesis, Entwurf und Realisierung einer Anbindung von Radar-

sensoren an eine ECU mittels SSC- und CAN Bus, to be published in 2007

[2] Robert Bosch GmbH, Techical Report, CAN Specification, 1991

[3] Freescale Semiconductor, Manual, MPC5200B User's Manual, 2006

[4] Karl-Heinz Mattheis and Steffen Storandt, Manual, Arbeiten mit C166-Controllern, 1995

	Abstract
	1 Introduction
	2 Data transfer
	3 Realisation
	4 Conclusion
	5 Acknowledgement
	6 References

