
CAN Connected To FlexRay 
 
 

 

Dipl.-Ing.(FH) Marc Steuerer 
Prof. Dr.-Ing. Alfred Höß 
 

Fachhochschule Amberg-Weiden 
Kaiser-Wilhelm-Ring 23 
92224 Amberg 
m.steuerer@fh-amberg-weiden.de 

 
Michael Wächter 
Berthold Ernstberger 
 

Siemens VDO 
Osterhofer Straße 10 
93055 Regensburg 

 

 
 

Abstract 

The number of electronic control units in an automobile is increasing permanently, thus the 
data traffic is increasing as well and large amounts of data have to be exchanged between 
ECUs (electronic control unit) and other components in a vehicle. At present, most 
automobile manufactures are using the CAN bus system, but the performance of this bus 
systems has reached its limits. 

The bottom line is that a new bus system with higher performance has to be established. 
Therefore, the FlexRay (FR) bus was developed. It represents a deterministic, fault-tolerant 
and high-speed bus system. But most electronic parts in a vehicle do not support this new 
FlexRay bus system. In a first step, the FlexRay bus system can be used as a backbone for 
data transfer. So it is necessary to convert CAN data into the FlexRay format and vice versa.  

Among others, the German research project AUTOSAFE is concerned with this topic. The 
project aims at the further improvement of road traffic safety. For this purpose it is essential 
to transmit a lot of time and safety critical data within the system. The FlexRay bus is 
predestinated for a system with such requirements. 

This paper describes the basic idea of the conversion process which transfers the data from 
one bus protocol into the other. This procedure occurs in a Gateway which contains one 
FlexRay and three high-speed CAN ports. 

 

1 Introduction 

Before starting the discussion on data conversion, it is recommended to consider some 
essential items. These are the experimental setup and a rough overview about the 
differences between the FlexRay and the CAN protocol. 

The test setup of the system is shown in figure 1. As mentioned we are using a Gateway for 
the conversion of the CAN and FlexRay data. This Gateway brings three CAN channels 
together to one FlexRay channel. Main parts of the Gateway are a HC12 processor with 
three included CAN busses and the MFR4200 FlexRay controller. 

The CAN and the FlexRay nodes are simulated by three standard PCs. The FlexRay PC 
contains a FlexRay card with two channels. The first CAN PC contains a CAN card with two 
channels and the other an USB CAN module with one channel. 



 

The next paragraphs give an overview about the FlexRay and the CAN protocol. Figure 2 
shows a simplified standard CAN message. A detailed description of the CAN protocol can 
be found in [1]. To illustrate the principle of converting messages the paper considers only 
the standard CAN messages. 

 

The important parts of this CAN message are the identifier (ID), the control field (CTRL) and 
the data field (DATA). The control field contains among other information the data length 
code and the remote transmission request bit. The other fields in the frame are: start of frame 
(SOF), cyclic redundancy check code (CRC), acknowledge bit (ACK) and the end of frame 
(EOF). 

The FlexRay frame is quite different to the CAN frame and a little bit more complex. Figure 3 
shows a simplified FlexRay frame. More information about the FlexRay specification is given 
in [2]. Important for the application are the identifier (ID), the payload length (LEN) and the 
payload segment (DATA). The payload segment is comparable with the data field of the CAN 
message. Further each cycle contains a counter (CNT) which indicates the current cycle. 

 

Unlike the CAN frame the FlexRay SOF contains some more information (see [2]). A 
FlexRay cycle is composed of a defined number of such FlexRay frames. This cycle again is 
divided in a static segment, dynamic segment, a symbol window and a network idle time 
(NIT). The FlexRay frames in the static and the dynamic segment respectively are also 
known as slots. This leads to the structure shown in figure 4. A brief overview about the 
FlexRay bus is given in [3]. 

 

Figure 1: Experimental setup 

 

Figure 2: Standard CAN Message 

 

Figure 3: Simplified FlexRay Message 

 

Figure 4: FlexRay communication cycle 

static segment dynamic segment symbol window NIT 

SOF ID CRC DATA CRC CNT LEN 

SOF ID CRC EOF DATA CTRL ACK 

Gateway 
 
FR 
  
 
        CAN 

 
PC CAN1 

 
PC CAN2 

 
PC FR 



2 Data Conversion 

This section is concerned with the technique of data conversion. The most important 
question is; How can we put the CAN message in a FlexRay slot? The solution in this matter 
is to put all relevant information of the CAN message into the payload segment of the 
FlexRay frame. The result of this idea is shown in figure 5. It illustrates a FlexRay payload 
segment which contains all necessary CAN information. This segment is built of six cells. 

 

Each single cell of the FlexRay payload segment has a length of two bytes. That leads to a 
payload segment with a length of twelve bytes (six words corresponding to six cells). The 
standard CAN identifier goes into the first cell of the FlexRay payload segment. If an 
extended CAN message is desired, another cell has to be added. CAN Info structure 
contains special CAN information, see figure 6. In the last four cells the actual CAN data are 
placed, denominated as D0 to D7. 

 

Like every other cell the CAN info field has a length of two byte. The subsequent list shows 
the meaning of each bit in the CAN info structure. 

• Bit 0 – 3:  DLC, length of the CAN message. 

• Bit 5:   RTR, remote transmission request. 

• Bit 7:   EXT, does the message have an extended identifier? 

• Bit 7 – 9:  The incoming/outgoing Gateway CAN port. 

 

The length of the FlexRay payload segment is therewith defined. Next desired parameters 
are the numbers of send and receive slots of the FlexRay cycle. With these three parameters 
we are able to appoint the cycle length. This length again is important to calculate the 
numbers of possible CAN messages within a FlexRay cycle. 

The storage of the used FlexRay hardware is delimited. It is just possible to store the data of 
at most 59 slots. Two of these slots are already reserved for the synchronisation of the 
FlexRay clusters. Hence, it is mandatory to think about the number of CAN messages which 
need to be sent and received.  

In our case we defined 45 send and 10 receive slots. Such asymmetrical distribution is 
feasible as we have more CAN data to send as to receive. The definition of send and receipt 
is dependent on the point of view. The definition used in this paper shows figure 7.  

 

 

Figure 5: CAN message in a FlexRay payload segment 

 

Figure 6: CAN info structure 

  

                                       9    8    7    6         5          3    2    1    0 

Std CAN ID CAN Info D0     D1 D2     D3 D4     D5 D6     D7 



Altogether we need 55 FlexRay slots with six words payload each and two slots for the 
synchronisation. Therewith we are able to calculate the cycle time. But this calculation is 
more complex because the user has to mind some other settings. The detailed calculation of 
the configuration parameters is listed in [2]. The bottom line is that we have a cycle time of 
2000µs. 

 

As the FlexRay cycle now is defined, we will consider the CAN messages. Important 
information is the transmission time of the CAN messages. The shorter this time the more 
CAN messages can be transmitted in a defined time span. Time span in our application is 
the length of a FlexRay cycle. So it is necessary to calculate how many CAN messages can 
be transmitted in this time. 

As bit duration we took 2µs, because we used a high-speed CAN with 500kBit/second. As 
average message duration we assumed the following values. 

• CAN message with one data byte  => 54 Bit => 108 µs 

• CAN message with four data bytes  => 78 Bit => 156 µs 

• CAN message with eight data bytes  => 120 Bit => 240 µs 

 

For the calculation of the transferable CAN messages we consider just three different cases. 
These three different cases are defined as shown in table 1. The direction declares whether 
the Gateway receives (RX) or transmits (TX) the CAN message (see figure 7). 

 

The computation of the maximum numbers of CAN messages ( rcvn ) that can be received at 

the Gateway and the transmit duration ( cand ) happens with the following equations. It uses 

the parameters FlexRay cycle time ( FRt ), the number of receive slots ( RXS ) and number of 

transmit slots ( TXS ), the number of CAN ports ( portsn ), the received ( rcvd ) as well as transmitted 

( trsd ) CAN messages. 

 

Figure 7: Slots consideration 

Cases Direction Data length rcvd  trsd  

Case 1 CAN TX 
CAN RX 

8 bytes 
8 bytes 

 
240µs 

240µs 

Case 2 CAN TX 
CAN RX 

4 bytes 
4 bytes 

 
156µs 

156µs 

Case 3 CAN TX 
CAN RX 

8 bytes 
1 bytes 

 
108µs 

240µs 

Table 1: Transmission cases 

Gateway 

 

CAN 
 

FR 

Send slots 

Receive slots 



 

The calculation of the three cases leads to the results shown in table 2. The grey columns 
show the results of the formulas above. Normally, the busload never rises above around 

60%. Anyway, in these calculations underlie a busload of 100%. Result cand  rises in case one 
and case three above the given FlexRay cycle length. Also rcvn  is in case three higher than 

the allowed value. A 60% busload fulfils the desired requirements. 

 

It has to be kept in mind that these calculations do not include the operating time for the 
conversion of the data packets. On this account the conversion algorithm has to be very fast. 
The system should not waste time for polling the CAN and FlexRay ports. Therefore each 
incoming CAN and FlexRay channel at the Gateway is using an own interrupt service routine 
(ISR) for the interception and the conversion of the messages. Figure 8 gives a simplified 
overview about the conversion processes in the Gateway. 

 

To minimise the conversion time, the Gateway works just with the effectively needed data. 
The system copies just the required data, e.g. if a CAN message contains four data bytes the 
system copies just these four bytes. Each copy process needs a lot of time, therefore it is 
essential to reduce the amount of copy procedures to a minimum. In the next section this 
coherence is obvious. 

 

3 Operating time consideration 

For the evaluation of the system it is necessary to consider the operating time the data need 
for their way through the Gateway. Therefore, it is needful to calculate the expected 
operating time and compare this with the measured values. 

trsRXcan dSd ⋅=  

ports

rcv

rcv n
d
tn FR

⋅=  

Case FRt  RXS  cand  TXS  rcvn  

1 2000µs 10 2400µs 45 25 
2 2000µs 10 1560µs 45 39 
3 2000µs 10 2400µs 45 56 

Table 2: Transmission calculation 

 

Figure 8: Conversion process 

ISR CAN 1 

ISR CAN 2 

ISR CAN 3 

CAN 
 
 
 
    FR 

ISR FR 

CAN 
 
 

    FR 



The calculation of these values happened already in the section above. For the 
measurement of the operating time we used a digital output pin of the HC12 processor in the 
Gateway and an oscilloscope. In this manner it is possible to measure the operation time 
exactly and the processor is not additionally stressed. 

The regarded values are the conversion times of the data from CAN into FlexRay as well as 
from FlexRay into CAN. Before we take a look at the conversion it has to be noted that the 
conversion time is build of the time the processor needs to read the data from the hardware 
buffer, to convert the data and to write the data back into the hardware buffer. Most time is 
needed to write the data to the hardware buffer or read from it. In comparison to this, the 
actual conversion process takes just marginal time. 

First considered value is the CAN to FlexRay conversion time ( covt ). The measure points are 

set at the CAN input and the FlexRay output (see figure 8). So we can measure the time a 
CAN message need from the input to the output. Table 3 shows the time in relation to the 
CAN data length. 

 

Next interesting value is the elapsed time for the conversion from FlexRay to CAN. The 
measurement points are set at the FlexRay input and at one CAN Output. The time to 
convert and transfer the data is the same for all three CAN ports. 

In this case it does not really matter whether we send eight bytes or one byte. The length of 
the FlexRay frame is the same in all cases. Just the converting time varies a bit. But the 
differences are marginal. So the result is just one value which is the average of all 
possibilities – 78µs. 

The meaning of these results needs to be interpreted. First, the measured values have to be 
compared with the calculated ones. Since we have three CAN ports it is necessary to 
calculate the conversion time ( covt ) for the usage with all three ports. Table 4 combines all 

values and shows their comparison. It would be optimal, if the value portsnt ⋅cov  is always lower 

than the time ( rcvd ) a message needs to transfer over the bus. 

 

For the evaluation we have to regard two different cases which result from table 4. First case 

rcvports dnt ≤⋅cov : We do not get problems with the conversion and the transfer of the CAN data. It 

takes longer to transmit these messages over the bus than to convert. Therewith the 
conversion algorithm and the processor are fast enough. 

Second case rcvports dnt >⋅cov : We have to keep in mind that this case will lead to problems for 

very high busloads. Normally, the busload does not exceed around 60%. This problem is 
illustrated in figure 9. 

Data length covt  

8 bytes 73µs 
4 bytes 65µs 
1 byte 60µs 

Table 3: CAN to FlexRay 

Message rcvd  covt  portsnt ⋅cov  

8 bytes CAN->FR 240µs 73µs 219µs 
4 bytes CAN->FR 156µs 65µs 195µs 
1 byte CAN->FR 108µs 60µs 180µs 
FR->CAN  78µs 234µs 

Table 4: Comparison 



The scenario shall be explained in more detail by following example: We use a CAN 

message with a length of four bytes. For the calculation of the busload ( B ) in percent the 
following term can be used: 

 

Parameters in this formula are the number of bits ( bitsn ), the speed of the CAN bus ( s ) and 

the periodic time (T ) of the transmission. In the example we assumed a busload of 65% and 

that leads to a periodic time (T ) of 240µs. As a result we have portsntT ⋅> cov , from which 

follows that conversion algorithm and processor are fast enough (see figure 9). 

Figure 9 shows the load on the three CAN busses and an example of the converting process 
inside the Gateway. The order of the conversion in figure 9 is by pure chance. It can be 
concluded that there remains an idle time after the conversion of all three CAN busses. The 

idle time is Tnt ports −⋅cov , in our case it is about 45µs. The same calculation can be applied for 

all other kinds of CAN message lengths. 

 

We do not consider the way of the data from FlexRay to CAN because the results are 
comparable to the conversion of an eight byte CAN message (see table 4). So, the results 
are almost the same. 

 

4 Conclusion 

This paper introduced a basic data conversion concept having regard to the time critical 
transmission of the data. In a safety critical system it is mandatory that no data get lost to 
exclude serious consequences. 

As discussed in the sections above it is possible to convert the CAN data into FlexRay data 
without losing any information, assuming the bus load on the CAN bus system does not 
exceed a certain limit.  

The introduced system in this paper contains three high-speed CAN bus ports and a single 
FlexRay channel. With this system it is possible to convert messages if the busload on each 

100⋅

⋅

=

Ts

n
B

bits

 

 

Figure 9: Example 

t 

CAN 3 

CAN 2 

CAN 1 

240 µs 480 µs 720 µs 

Process 

Idle time 

Idle time 

Conversion start Conversion complete 



CAN channel does not exceed around 65%. The FlexRay bus speed does not matter in this 
consideration, because it is fast enough to transfer the desired CAN messages. 

This busload limit varies if the number of CAN channels or the CAN bus speeds change. 
Further, the conversion time is heavily dependent on the used hardware (FlexRay and CAN 
controller as well as the microcontroller). Another important point discussed in this paper is 
the dependency of the FlexRay cycle length from the desired data to transmit. The longer the 
FlexRay cycle the more data can be transmitted. 

The usage of a processor with a higher performance then the HC12 will optimise the 
conversion process significant. Further the integrated CAN controllers contain three transmit 
and five receive buffers for CAN messages. Also another FlexRay controller can be used. 
The MFR4200 contains just 59 message buffers each with up to 32 bytes of data. For this 
application the hardware configuration is satisfactory. But for more complex applications (e.g. 
more CAN ports or more FlexRay channels) hardware with higher performance is required. 

 

5 Acknowledgment 

This work was supported by the German Research Ministry (BMBF). The authors want to 
thank the Nanoelectronic unit of the BMBF for granting AUTOSAFE under funding no. 
01M3076. 

 

6 References 

[1]  Robert Bosch GmbH, Technical Report, CAN Specification, 1991 

[2]  FlexRay Consortium, Technical Report, FlexRay Communications System Protocol 

Specification, 2005 

[3] Dr. Christopher Temple, Conference, Protocol Overview, 2003 

[4] Marc Steuerer, Unpublished, Daten-Konvertierung im FlexXCon, 2006 

[5] Freescale, Manual, FlexRay Communication Controllers 

[6] Freescale, Manual, MC9S12DT256 Device User Guide 


